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While basic research on animal coloration is the theme of this special edition,

here we highlight its applied significance for industry, innovation and society.

Both the nanophotonic structures producing stunning optical effects and

the colour perception mechanisms in animals are extremely diverse, having

been honed over millions of years of evolution for many different purposes.

Consequently, there is a wealth of opportunity for biomimetic and bioinspired

applications of animal coloration research, spanning colour production,

perception and function. Fundamental research on the production and per-

ception of animal coloration is contributing to breakthroughs in the design

of new materials (cosmetics, textiles, paints, optical coatings, security labels)

and new technologies (cameras, sensors, optical devices, robots, biomedical

implants). In addition, discoveries about the function of animal colour are

influencing sport, fashion, the military and conservation. Understanding and

applying knowledge of animal coloration is now a multidisciplinary exercise.

Our goal here is to provide a catalyst for new ideas and collaborations between

biologists studying animal coloration and researchers in other disciplines.

This article is part of the themed issue ‘Animal coloration: production,

perception, function and application’.
1. Introduction
Since its foundation at the turn of the nineteenth century by luminaries includ-

ing Alfred Russel Wallace, Edward Poulton, Abbot Thayer and Charles Darwin,

animal coloration research has contributed to an increasing breadth of scientific

disciplines. Use of colour phenotypes as genetic markers to study develop-

mental processes and natural selection in the wild was critical to the early

development of genetics and evolutionary theory. Later, Hugh Cott’s [1]

important volume on the adaptive coloration of animals changed the way we

think about the functional significance of colour patterns. As technologies

advanced, biologists turned their attention to colour perception, particularly

of ultraviolet wavelengths, recognizing that other animals see the world very

differently compared to humans. Most recently, the discovery of photonic crys-

tals in nature [2] has led to a surge of research on structural coloration and its

biomimetic applications. Both the diversity of areas encompassing modern

animal coloration research and the rapid pace of developments in each make

it a particularly exciting interdisciplinary field.

This volume provides an entry point to recent developments in the main

areas of animal coloration research: colour production, perception, function

and evolution. All the topics covered in this special issue touch on the interdis-

ciplinary nature of such research, which now straddles optical physics, genetics,

physiology, psychology, functional morphology, behavioural ecology and evo-

lution [3]. But animal coloration research not only draws on many disciplines, it

also contributes to fundamental knowledge in those disciplines and generates

solutions to societal problems. Contributions to this themed issue primarily

focus on advances related to fundamental knowledge. However, many novel
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Figure 1. Examples of nature (a,c,e) and the mimicry it inspires (bottom). (a) Morpho butterfly and (b) dye-free Morphotexw fabric; (c) compound eye of the
housefly and (d ) the ‘bee-eye’ camera lens; (e) cryptic camouflage of a nightjar and ( f ) a stealthy sniper. Image credits: (a) Wikimedia Commons; (b) Donna Sgro;
(c) Thomas Shahan; (d ) John Rogers; (e) Jolyon Troscianko; ( f ) Realtree/Caters News.
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connections between basic and applied research are emer-

ging, especially in terms of colour production, perception

and function, and we highlight these here.
2. Production of colour
Colour in nature is remarkably diverse and often visually stun-

ning. It is produced by both chemical pigments, which absorb

certain wavelengths of light, and by physical structures on the

scale of hundreds of nanometers, which manipulate light in

varied ways. Such structural colour is of particular interest

for the development of artificial materials because it can be

astonishingly vivid, produces a range of optical effects (irides-

cence, polarization, metallic sheens, anti-reflection) and has

specific features. First, structural coloration is durable, lasting

as long as structures remain intact. Second, the remarkable

range of optical effects is produced by few types of renewable

material (e.g. chitin, keratin, guanine [4,5]). Third, biological

materials are self-assembled, such that highly ordered struc-

tures are produced within such materials through local

cellular processes. Last, animal surfaces combine colour with

a range of other desirable properties such as resistance to

abrasion and bacterial degradation, water repellency (hydro-

phobicity) and photoprotection. All of these features are

often desirable for artificial materials; thus, materials scientists

and engineers increasingly draw on the diverse structural vari-

ation in nature to inspire new technologies and provide

blueprints for materials design [6–11].

Synthetic photonic structures were produced well before

they were discovered in nature [2] but have now been character-

ized in numerous species spanning a broad range of animal

groups (particularly birds, beetles, butterflies, cephalophods

and fishes) as well as single-celled organisms (diatoms) and

plants. Natural photonic structures have already inspired devel-

opment of many coloured materials including pigment-free (i.e.

structurally coloured) cosmetics, textiles, paints, various optical

coatings, security labelling or anti-counterfeiting technologies

(e.g. metallic holograms on credit cards and banknotes), optical
devices that focus or polarize light, various sensors and technol-

ogies to improve the efficiency of solar cells [8,11]. Perhaps most

famously, the structural properties of the iridescent blue wings

of Morpho butterflies have been mimicked in the development

of pigment-free cosmetics and iridescent blue ‘Morphotexw’

fabric (figure 1a,b).

The key parameters determining optical properties of

photonic structures are the size, spacing and regularity of the

optical elements, as well as the ratio of the refractive index of

the structure’s component materials (e.g. chitin, keratin or

guanine versus intervening air or cytoplasm). Optical proper-

ties can also be influenced by external factors such as pH,

temperature, humidity and electromagnetic fields [11]. Many

animals that change colour do so in response to such external

stimuli and these changes can involve structural colour [12].

This is important in the development of ‘smart materials’

(materials with properties that change in response to external

stimuli) and various optical sensors, including humidity, ther-

mal and chemical sensors. For example, the Hercules beetle

(Dynastes hercules), which changes colour with varying humid-

ity, has inspired the development of highly sensitive humidity

sensors [13]; and the quasi-ordered collagen arrays in turkey

skin have inspired sensors that change colour in response to

target chemicals [14]. These are just a couple of the rapidly

growing number of examples of biomimetic or bioinspired

technology based on ‘tuneable’ structural colour [9,15,16].

Nanophotonic structures produce a wide range of optical

effects in addition to colourful, reflective surfaces. Moth and

butterfly eyes have anti-reflective surfaces on their corneas,

which reduce reflectivity by a factor of 10 and aid vision in

low light conditions [6]. Similarly, various insects have trans-

parent, anti-reflective wings, which enhance camouflage, and

anti-reflective coatings have recently been discovered in

deep-sea crustaceans [17]. These structures have inspired

the design of coatings to improve anti-reflective properties

of windows and lenses, and solar cells to increase energy cap-

ture and to expand the performance of light-emitting diodes

[10]. The biomimetic potential of other optical properties of

natural structures, including structurally-assisted blackness
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and ultra-whiteness, is now being explored [10,18,19]. Nota-

bly, many natural materials combine multiple optical

elements into sophisticated structures to produce diverse

optical effects. For example, many butterfly wings combine

both one- and two-dimensional photonic crystals, as well as

an element of irregularity or disorder, that increase the

angle of scattering such that the colours are apparent from

a broader range of viewing angles [5,20].

In addition to optical properties, it is important to contem-

plate other properties of materials, such as their stability,

durability, mechanical and thermal properties. This requires

consideration of multiple components of the solar spectrum

including ultraviolet (280–400 nm), visible light (400–700 nm)

and near-infrared (700–2600 nm) radiation. Ultraviolet radi-

ation causes chemical reactions that damage biological (eyes,

skin, etc.) and synthetic materials, and visible and near-infrared

reflectance are both important to surface heat gain because

approximately 50% of direct solar radiation falls within each

of these wavelength bands. Development of nanophotonic-

enabled smart materials to control environmental energy flow,

including solar radiation, is burgeoning. Forexample, ‘cool coat-

ings’ for roofs and buildings can be used to mitigate the ‘urban

heat island’ effect and reduce energy use [21]. Such materials

reflect a higher proportion of near-infrared radiation than simi-

larly coloured ‘standard’ coatings. The biomimetic potential for

manipulating both visible and near-infrared reflectance is

significant (although yet unrealized) because in plants and ani-

mals, visible and near-infrared reflectance and the relationship

between them can vary substantially [22]. Living organisms

have already solved design challenges associated with colour

and heat in myriad ways over millions of years of evolution, pro-

viding rich opportunities for development of biomimetic and

bioinspired materials.
3. Perception
As with biomimetic colour production, the number of appli-

cations inspired by animal visual perception has proliferated

in the past decade.

(a) Cameras and sensors
Studying diverse animal visual systems has provided engin-

eers with new solutions for the design of better imaging

technology and artificial sensors. The typical digital camera,

which houses a photosensitive chip (e.g. a CCD or a CMOS

sensor) behind a lens with a single aperture, was modelled

on the human visual system [23]. Our eyes use a lens to

focus the light on the retina, where rods and cones then con-

vert the image into electrical impulses, triggering a cascade

of visual processing. Conventional digital cameras can be

powerfully applied to many imaging tasks, but they are

often bulky, computationally costly and constrained in their

field of view. For these reasons, interest in non-human eye

designs—especially the compound eyes of arthropods—has

exploded [23,24].

Compared with simple vertebrate eyes, compound eyes

are compact and lightweight, providing a wide field of view

with high temporal resolution, given their tiny packaging [25].

Mimicking these properties in cameras and sensors is giving

way to a new generation of imaging technology. Recently,

we have seen the invention of a ‘bee-eye’ camera with a

280-degree field of view (figure 1c,d; [26]), a miniature curved
artificial compound eye [25], a digital camera covered with

180 artificial ommatidia, inspired by eyes of fire ants Solenopsis
fugax and bark beetles Hylastes nigrinus [27], and the development

of hyperacute visual sensors based on retinal micro-movements

in flies [28]. This new fleet of imaging technology has important

consequences for surveillance, medical endoscopy, smart

clothing, robotics and drones [24,25,29].

As biomimetic efforts in imaging and sensing continue, we

expect to see increased emphasis on colour processing and

colour discrimination—which will require detailed knowledge

of colour vision systems across animal taxa. Consider nocturnal

helmet geckos Tarentola chazaliae, which possess large colour

cones that are 350 times more sensitive than those of humans

at the colour vision threshold [30], or the mantis shrimp

Haptosquilla trispinosa. Despite the shrimp having 12 different

photoreceptor types, they appear to be deficient in fine colour

discrimination [31] and may in fact scan objects to rapidly

recognize basic colours, though this idea needs further testing.

It is only a matter of time before new camera systems exploit

increased colour sensitivity, as in geckos, and rapid colour

processing, as in mantis shrimps.

Breakthroughs in night vision technologies are also on the

horizon. How are so many nocturnal insects able to see

colour, identify visual landmarks, orient using celestial cues

and detect faint movements, all in low light? A recent hypoth-

esis [32] is that insects achieve this through a process called

neural summation, in which the light received by groups of

neighbouring ommatidia is summed up, greatly improving

the signal-to-noise ratio in low light. A night vision computer

algorithm designed to mimic neural summation successfully

recovered colour and brightness detail from videos filmed at

night [32]. Algorithms like this may soon be incorporated into

night vision technology, which has extensive military, monitor-

ing and navigation applications. In addition, a new artificial fish

eye, designed to mimic the light-focusing crystalline micro-

structures in the elephantnose fish Gnathonemus petersii retina

is capable of resolving images in very low light [33].
(b) Liquid crystal displays and optical devices
Polarization transformation, or the act of converting linear

polarized light to circular polarized light and vice versa, is

essential to the design and operation of LCD displays, optical

storage (CDs, DVDs and Blu-ray Discs) and even three-dimen-

sional movie technology. Usually polarization transformation

is performed by an optical device called a waveplate. The dis-

covery that a special class of photoreceptor in the peacock

mantis shrimp Odontodactylus scyllarus can efficiently convert

polarized light has major implications for the optical device

industry. These photoreceptors, called R8 cells, detect polar-

ized light and then shift the plane of polarization, turning

circular polarized light into linear polarized light. The shift

occurs because R8 cells contain arrays of small folds called

microvilli, the membranes of which are birefringent (e.g.

their refractive index depends on the direction of polarization

of light). The arrangement and structure of the microvilli

causes the R8 cell to act as an achromatic waveplate over a

wide range of wavelengths [34]. Inspired by the R8 cells, a

team used thin films to fabricate a multilayered, birefringent

structure which functions as an achromatic waveplate over a

broad spectrum [35]. The result, an artificial waveplate with

highly desirable optical properties, could transform the optical

device industry. The artificial waveplate is an advance because,
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unlike most synthetic waveplates, its performance does not

depend on wavelength.

(c) Computer vision and robotics
Principles of animal vision—especially human vision—have

been a driving force behind computer vision and machine

learning. The deep synergies between biological and compu-

ter vision have been reviewed recently [36,37]. Here, we

briefly highlight two developments in the active field of

bioinspired computer vision. First, a central goal of computer

vision is to extract salient features from a scene; historically,

algorithms have used intensity-based (achromatic) descrip-

tors only. However, colour is now being incorporated into

many computer vision models [38,39], with a focus on funda-

mental aspects of human colour vision, including colour

opponency [40] and colour constancy [41].

In addition, there appears to be a steady shift toward study-

ing non-human visual systems in the context of computer vision,

largely motivated by the desire to build robots that can navigate

in ways and in environments that humans cannot. Honeybees,

for example, have become a model system for the study of visu-

ally guided flight [42]. When a bee flies through a narrow

passage, it balances the speed of image motion detected by the

two eyes; this keeps the bee from colliding with either side of

the passage. Similar novel algorithms are being used to program

autonomous terrestrial and aerial vehicles [42]. Desert ants

Cataglyphis spp. have also influenced new navigation solutions.

Capable of finding their way back to nests after foraging

hundreds of metres away in the desert, these ants rely on polar-

ized light to return home. Recently, a research team designed a

robot which effectively navigates using an ant-like polarization

sensor [43]. Finally, new infrared sensors, inspired by specialized

IR-sensing structures in fire-loving Melanophila beetles, have

been developed [44] and could be used in robots trained to

survey dangerous fire zones. These advances underscore the

continued importance of studying diverse visual (and, in

the case of IR, thermomechanical) systems in the context of

robotic navigation.

(d) Biomedicine
One of the most exciting advances in applied colour vision

involves bionic devices, which are designed to restore some

visual perception to blind patients. Based on the retina of the

human eye, the Argusw II Retinal Prosthesis System (Second

Sight, Sylmar, CA) is an implant that electrically stimulates

the retina, inducing visual perception. The device consists of

a 60-electrode ‘retina’, which is surgically implanted, plus a

camera worn on glasses and a small video processing unit

(VPU). The camera captures the visual field and sends the

information to the VPU, which translates the scene to a series

of electric pulses on the 6 � 10 ‘retina’ array. Remarkably,

blind patients fitted with the Argus II showed considera-

ble improvement in spatio-motor tasks [45] and a small

improvement in colour perception [46].
4. Functional considerations
As this themed issue will show, coloration has multiple conse-

quences for both non-humans and humans, and the latter

extend into recreational activities, aspects of culture, the

realm of defence and even conservation of biodiversity.
(a) Competitive sports
Parallel areas of research bear on the issue of external color-

ation in competitive sports. First, in a handful of non-

human primates, red signals social status, as in male gelada

Theropithecus gelada [47], drills Mandrillus leocophaeus [48]

and mandrills Mandrillus sphinx [49]. Second, in humans,

facial redness is associated with anger in some populations

(blushing aside [50]). Furthermore, human subjects perceive

themselves as being more dominant or aggressive when

they choose to wear red clothes [51] and the heart rate of

red dressers is elevated in the context of physical combat

[52]. Interestingly, men but not women perceive red subjects

as more dominant [53].

These issues likely have consequences for success in

sports and indeed, a related body of work shows that red

clothing has an incremental positive impact on contest out-

come in one-on-one sports where opponents are evenly

matched. These sports include boxing, tae kwon do, Greco-

Roman wrestling and freestyle wrestling [54]. Moreover, in

the lucrative professional soccer arena, in home games the

team that wears red jerseys is more likely to win [55].

While some of these effects may be due to differential treat-

ment of red-clad competitors by referees [56], the discovery

that red goalkeepers save more penalties suggest players’

own perceptions are involved [57].

There seem to be a variety of responses to red clothing

including aversion [58], reduction in speed of approach [59]

and higher arousal [60], but the underlying mechanisms are

opaque: red might signal health, blood oxygenation or flux,

diet, or ability to mobilize testosterone. Certainly red appears

to signal dominance in several vertebrate groups and is

innately avoided in some taxa [61]. This is a field of enquiry

that needs to be extended to other colours and across other

team sports incorporating referee bias. The influence of cloth-

ing colour in sport is big business: there are huge financial

implications because of betting and advertising revenue.

(b) Fashion
Colour is an integral part of both clothing and cosmetics. For

example, some studies have demonstrated that Caucasian

men find women wearing red to be more attractive than

those wearing blue, and show a greater willingness to date

them and spend money on them [62]; others have shown that

Caucasian women are aware that red makes them appear

more attractive in that they alter facial expressions [63] and

are more likely to wear red when looking for casual sex [64].

Yet other studies have shown that women perceive other

women in red as being disreputable [65]. Thus far, research

has mostly concentrated on red coloration with scant academic

attention paid to other colours [66], although differences

among individuals in perception of a blue dress has attracted

much attention on social media [67].

Clothing has involved use of animal products starting from

hides worn by archaic humans to silk produced by silkworms

to women’s hats made out of feathers, but recently there has

been a surge of interest in biofabrication. For example, a

dress has been constructed out of structural fibres similar to a

Morpho’s wings, and microbes are being harnessed to produce

clothes constructed of cellulose. Companies include Bolt

Threads, BioLoom, Modern Meadow, Biocouture, Pembient

and BioFur. Practical examples aside, clothing fashions have

yet to be seriously scrutinized using biological principles.
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Certainly, fashion changes very rapidly, suggesting a Fisherian

runaway process but this may be only a superficial comparison

and does little to explain how the colour of clothing is related to

illumination (e.g. brighter clothes in the tropics), temperature

(e.g. whiter clothes at lower latitudes), or a variety of cultural

variables such as marriage practices.

Apart from clothing, cosmetics are another method of

changing external appearances and principally involve four

components: colouring the lips to perhaps highlight verbal

communication and kissing; decorating cheeks to make

them appear redder, mimicking coloration associated with

health and blood oxygenation; and accentuating the size

and shape of eyes. Eyebrow and eyelid make-up may enlarge

the apparent distance to the eye and make the eyebrow more

conspicuous, mimicking an eyebrow flash [68]. Women

who use cosmetics are attractive to some men [69] and can

influence people’s behaviour, including tipping. Changing

epidermal coloration is not limited to the face, however, as

seen in tanning in some Western societies [70] and application

of dyes and coloured soils in ceremonies in former and current

non-Western societies. Information on altering skin colour is

reasonably well documented in Caucasians, but comparative

understanding geographically and historically across societies

needs much more attention [71].
(c) Military
Military tactics demand deception (e.g. dazzle coloration and

observation post trees), camouflage (e.g. clothing and netting

covering equipment), concealed movement (e.g. at night and

hugging features of the landscape) and decoys (e.g. construct-

ing false vehicles and buildings) that have many parallels in

animal external appearances and behaviour (figure 1e, f; [72]).

These analogies were not lost on the military and in the past

century commanders reluctantly drew on biologists to inform

some of their field operational techniques. Famously, Abbott

Thayer developed countershading for submarines and ships,

Norman Wilkinson and John Graham Kerr established dazzle

coloration for shipping, and Hugh Cott constructed decoys in

the North African desert. Yet a close inspection of their and

others’ achievements reveals that they actually used their bio-

logical expertise in the form of intuition rather than deriving

military tactics from first principles in biology [73], although

they did use the scientific method to investigate forms of

camouflage and deception.

A major problem for the military is that personnel and

transport must often be moved and will thereby encounter

different backgrounds, different weather and different lighting

conditions, so there is often no single solution to remaining

concealed. Form, shadow, texture, colour and movement all

have to be taken into account when considering transport,

stationary equipment and people (e.g. [74]). Nowadays,

modern armies, navies and airforces are more open to working

with scientists who bring new methods to describe camouflage

patterns and coloration [75] and visual tracking [76] to the

table.

Rapid contemporary changes in weaponry involving heat

detection, night vision, new explosives and suicide bombing

are driving the search for new defences including invisibility,

uncovering explosive signatures at the molecular level, and in

using the background to modulate colours of personnel and

vehicles. The extent to which principles of animal coloration

such as masquerade can be linked to military deception,
disruptive coloration and background matching to uniforms,

and dazzle coloration to transport, are open, interesting and

important questions.
(d) Wildlife management and conservation
Policymakers, engineers and scientists involved in colour

research are collaborating on solutions to reduce wildlife–

human conflict. Here we mention two case studies. First, in

the USA alone, bird collisions—many of which are with

buildings—may be responsible for almost one billion bird

deaths per annum [77]. However, the use of patterned glass

with UV-reflecting components (visible to birds but not to

humans) might reduce collisions by 60%, and these design fea-

tures are making their way into construction [78]. Moving

forward, UV-reflecting glass should account for variation in

avian UV perception [79]. Second, sensory-based conservation

could also help solve the problem of ‘polarized light pollution’

(PLP) [80]. PLP is created when sunlight reflects off man-made

smooth, dark surfaces (such as buildings, asphalt roads, glass

panes) and becomes linearly polarized. These human products

resemble the surface of dark waters, which are the most

common natural polarizer. As many animals have refined

polarization vision, the rise of anthropogenic PLP will affect

behaviour and ecology of many taxa. This is already happen-

ing: male dragonflies establish territories on cars and females

lay their eggs there, waterbirds crash-land on asphalt parking

lots (although the influence of PLP is contentious here) and

aquatic insects such as caddisflies land on glass structures,

only to be picked off by opportunistic birds [81]. The introduc-

tion of materials that reduce surface polarization (e.g. rougher,

brighter asphalt) could dramatically reduce the negative

impacts of PLP on animals in the urban environment.

As external appearances are an integral part of protective

coloration and signalling, changes in lighting, background

environment, or the medium through which colour signals

are transmitted will likely lead to population changes in exter-

nal appearances [82], which could be used as bio-indicators of

pollution. The most famous historical example is melanism in

the peppered moth Bison betularia [83]; a more contemporary

example is that melanism in several taxa may rise as global

warming-induced fires increase (as in pygmy grasshoppers,

Tetrix subulata [84]). Many other environmental changes are

occurring. For example, as mangrove acreage declines with

sea-level rise, changes in colour frequencies can be expected

in Bornean gliding lizards Draco cornutus that match the col-

ours of freshly fallen leaves in either mangroves or rainforest

[85]; and as snow cover declines with global warming, popu-

lations of Alpine rock ptarmigan Lagopus muta and snowshoe

hares Lepus americanus will dwindle [86,87]. In aquatic envir-

onments, where particulate matter in water absorbs short

wavelengths causing a shift towards orange and red, similar

evolutionary colour changes can be expected. For example, tur-

bidity driven by eutrophication interferes with mate choice in

cichlids based on their coloration and promotes species hybrid-

ization [88], whereas turbidity brought on by phytoplankton

blooms reduces nuptial coloration in sticklebacks Gasterosteus
aculeatus affecting both scale coloration and honest signal-

ling [89]. Colour shifts are conspicuous markers of subtle

anthropogenic change.

A separate issue is that conservation donor support

and political interest often hinge on flagship species. Many

of these species are conspicuously coloured, such as the
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golden toad Incilius periglenes. Since brightly coloured species

are arresting and memorable, these seemingly insignificant

factors can tip the balance in garnering the necessary political

will to set up protected areas such as Lake Nakuru National

Park for flamingoes Phoenicopterus roseus and P. minor in

Kenya, the El Rosario monarch butterfly Danaus plexippus
sanctuary in Mexico, and Wolong National Natural Reserve

for giant pandas Ailuropoda melanoleuca in China. Coloration

is an unrecognized factor in shaping conservation policy.
.org
Phil.Trans.R.Soc.B

372:20160
5. Conclusion
By highlighting numerous applications of animal coloration

research, we hope to underscore its broader importance and

impact. Exploiting the potential of animal coloration for biomi-

metic and bioinspired applications entails many components.

These include characterizing the complex structures producing

various colours and modelling their optical effects; characteriz-

ing the neurophysiology of colour vision; developing methods

to reproduce biological structures and systems (e.g. top-down
construction, self-assembly, cell culture) and developing

ways to mass-produce technologies efficiently and cost-

effectively. This is a truly multidisciplinary exercise, requiring

collaboration between biologists, physicists, materials scien-

tists, chemists and engineers. Understanding the function

and evolution of animal coloration also has implications for a

broad range of societal issues from sport and fashion to mili-

tary camouflage and wildlife management, necessitating

conversations between biologists and social and political scien-

tists. For biologists, the goal is to unravel the fundamental

biology underlying colour production, perception, function

and evolution, whatever its application. It is around these

themes that this special issue is organized.
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